Bài giảng Toán Lớp 8 - Bài 9: Số thập phân hữu hạn số thập phân vô hạn tuần hoàn

ppt 6 trang Hương Liên 24/07/2023 3130
Bạn đang xem tài liệu "Bài giảng Toán Lớp 8 - Bài 9: Số thập phân hữu hạn số thập phân vô hạn tuần hoàn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pptbai_giang_toan_lop_8_bai_9_so_thap_phan_huu_han_so_thap_phan.ppt

Nội dung text: Bài giảng Toán Lớp 8 - Bài 9: Số thập phân hữu hạn số thập phân vô hạn tuần hoàn

  1. 2. Nhận xét: • Nếu một phân số tối giản với mẫu dương mà mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn. • Nếu một phân số tối giản với mẫu dương mà mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân vô hạn tuần hoàn.
  2. - 6 Ví dụ 1: Phân số viết được dưới dạng số thập 75 phân hữu hạn không? Vì sao? Phân số - 6 viết được dưới dạng số thập phân 75 hữu hạn vì: - 6 - 2 + = là phân số tối giản. 75 25 + Mẫu 25 = 52 không có ước nguyên tố khác 2 và 5. - 6 -2 Ta có = = -0,08 75 25
  3. 7 Ví dụ 2: Phân số viết được dưới dạng số thập phân vô 30 hạn tuần hoàn không? Vì sao? 7 Phân số viết được dưới dạng số thập phân vô 30 hạn tuần hoàn vì: 7 + là phân số tối giản. 30 + Mẫu 30 = 2.3.5 có ước nguyên tố khác 2 và 5. 7 Ta có = 0,2333 = 0,2(3) 30
  4. Trong các phân số sau đây phân số nào viết được ? dưới dạng số thập phân hữu hạn, phân số nào viết được dưới dạng số thập phân vô hạn tuân hoàn? Viết dạng thập phân của các phân số đó. 1 -5 13 -17 11 7 ; ; ; ; ; 4 6 50 125 45 14 Giải Các phân số viết được dưới dạng số thập phân hữu hạn là: 1 13 -17 7 1 ; ; ; = 4 50 125 14 2 Các phân số viết được dưới dạng số thập phân vô hạn tuần hoàn là: -5 11 ; 6 45
  5. Dạng thập phân của các phân số: 1 13 = 0,25 = 0,26 4 50 -17 7 1 = -0,136 = = 0,5 125 14 2 -5 11 = -0,8(3) = 0,2(4) 6 45 Mỗi số hữu tỉ được biểu diễn bởi một số thập phân hữu hạn hoặc vô hạn tuần hoàn. Ngược lại, mỗi số thập phân hữu hạn hoặc vô hạn tuần hoàn biểu diễn một số hữu tỉ.
  6. Ví dụ: 1 0,(4) = 0,(1).4 = . 4 = 4 9 9 Mỗi số thập phân vô hạn tuần hoàn đều là 1 số hữu tỉ.