Bài giảng Toán Lớp 9 - Chương 1, Bài 1: Căn bậc hai
Bạn đang xem tài liệu "Bài giảng Toán Lớp 9 - Chương 1, Bài 1: Căn bậc hai", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_toan_lop_9_chuong_1_bai_1_can_bac_hai.ppt
Nội dung text: Bài giảng Toán Lớp 9 - Chương 1, Bài 1: Căn bậc hai
- CHƯƠNG I
- Ở lớp 7, ta đã biết : _ Căn bậc hai của một số a không âm là số x sao cho x2 = a. _ Số dương a có đúng hai căn bậc hai là hai số đối nhau : . Số dương kí hiệu là a . . và số âm kí hiệu là - a. _ Số 0 có đúng một căn bậc hai là chính số 0, ta viết: 0 = 0 ?1 Tìm căn bậc hai của mỗi số sau : 4 a) 9 b) c) 0,25 d) 2 9 Căn bậc hai của 9 là 3 và -3 4 2 2 Căn bậc hai của là và - 9 3 3 Căn bậc hai của 0,25 là 0,5 và -0,5 Căn bậc hai của 2 là 2 và - 2
- 1/ Căn bậc hai số học * Định nghĩa : Với số dương a, số a được gọi là căn bậc hai số học của a. Số 0 cũng được gọi là căn bậc hai số học của 0. Ví dụ 1: Căn bậc hai số học của 25 là 25 ( = 5). Căn bậc hai số học của 6 là 6 . Chú ý : Với a ≥ 0, ta có : x 0 x = a 2 x = a ?2 Tìm căn bậc hai số học của mỗi số sau : a) 49 b) 64 c)81 d) 1,21 a) 49 = 7 b) 64 = 8 c) 81 = 9 d) 1,21 =1,1 Phép toán tìm căn bậc hai số học của một số không âm gọi là phép khai phương (gọi tắt là khai phương).
- ?2 Tìm căn bậc hai số học của mỗi số sau: a) 49 b) 64 c)81 d) 1,21 a) 49 = 7 b) 64 = 8 c) 81 = 9 d) 1,21 =1,1 ?3 Tìm các căn bậc hai của mỗi số sau: a) 64 b) 81 c) 1,21 Căn bậc hai của 64 là 8 và -8. Căn bậc hai của 81 là 9 và -9. Căn bậc hai của 1,21 là 1,1 và -1,1.
- 1/ Trong các số ( - 3 ) 2 ; - ( - 3 ) 2 ; 3 2 ; - 3 2 số nào là căn bậc hai số học của 9 : 2 A) ( -3) và 3 2 B) - (-3) 2 và 32 C) (-3) 2 và - D) Tất cả đều sai 2/ Tìm những khẳng định đúng trong các khẳng định sau : A. Căn bậc hai của 0,36 là 0,6 B. Căn bậc hai của 0,36 là 0,6 và –0,6 C. 0,36 = 0,6 D. 0,36 = 0,6 TIME
- Ta đã biết: Với hai số a và b không âm, nếu a < b thì a < b . ❑ Chứng minh: Với. hai số a và b không âm, nếu a < b thì a < b. Ta có: a b a − b 0 Mà a ≥ 0; b ≥ 0 a + b 0 ( a − b)( a + b) 0 2 2 ( a)a –− b ( b) 0 b < 0 a < Vậy với hai số a và b không âm, nếu a b thì a < b.
- 2. So sánh các căn bậc hai số học: * Định lý : Với hai số a và b không âm, ta có: a < b a < b Ví dụ 2: So sánh: a) 1 và 2 Ta có 1 < 2 1 2 1 2 b) 2 và 5 Ta có 4 < 5 4 5 2 5 ?4 So sánh: a) 4 và 15 b) 11 và 3
- Ví dụ 3 : Tìm số x không âm, biết : a/ x > 2 b/ x 4 x 14 0 a/ x > 1 b/ < 3
- Chương I: căn bậc hai – căn bậc ba 1. CĂN BẬC HAI 1/ Căn bậc hai số học * Định nghĩa : Với số dương a, số a được gọi là căn bậc hai số học của a. Số 0 cũng được gọi là căn bậc hai số học của 0. Chú ý : Với a ≥ 0, ta có : - Phép toán tìm căn bậc hai x 0 số học của một số không âm x a gọi là phép khai phương (gọi = 2 x = a tắt là khai phương). 2/ So sánh các căn bậc hai số học * Định lý : Với hai số a và b không âm, ta có: a < b a < b
- Bài 1/6 SGK Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng. 121 144 169 225 Bài 3/6 SGK Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương trình sau (làm tròn đến chữ số thập phân thứ ba): a/ x2 = 2 b/ x2 = 3 c/ x2 = 3,5 d/ x2 = 4,12 Tổng quát: x2 = a (a ≥ 0) x = a hay x = - a
- ❖ Làm bài 2, 3(a,d) SGK/6. và 4, 5 SGK/7. ❖ Đọc mục “Có thể em chưa biết” SGK/7.