Giáo án môn Toán Lớp 11 - Tuần 28: Bài tập hai đường thẳng vuông góc
Bạn đang xem tài liệu "Giáo án môn Toán Lớp 11 - Tuần 28: Bài tập hai đường thẳng vuông góc", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
bai_tap_on_tap_toan_lop_11_tuan_28_bai_tap_hai_duong_thang_v.docx
Nội dung text: Giáo án môn Toán Lớp 11 - Tuần 28: Bài tập hai đường thẳng vuông góc
- Quan hệ vuông góc – HH 11 TUẦN 28: BÀI TẬP HAI ĐƯỜNG THẲNG VUÔNG GÓC A – LÝ THUYẾT TÓM TẮT 1. Vectơ chỉ phương của đường thẳng: a 0 là VTCP của d nếu giá của a song song hoặc trùng với d. 2. Góc giữa hai đường thẳng: a //a, b //b a¶,b a· ',b' Giả sử u là VTCP của a, v là VTCP của b, (u,v) . neáu 00 1800 Khi đó: a¶,b 0 0 0 180 neáu 90 180 Nếu a//b hoặc a b thì a¶,b 00 Chú ý: 00 a¶,b 900 3. Hai đường thẳng vuông góc: a b a¶,b 900 Giả sử u là VTCP của a, v là VTCP của b. Khi đó a b u.v 0 . Lưu ý: Hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau. B – BÀI TẬP Câu 1: Trong không gian cho ba đường thẳng phân biệt a, b , c . Khẳng định nào sau đây đúng? A. Nếu a và b cùng vuông góc với c thì a //b . B. Nếu a //b và c a thì c b . C. Nếu góc giữa a và c bằng góc giữa b và c thì a //b . D. Nếu a và b cùng nằm trong mp // c thì góc giữa a và c bằng góc giữa b và c . Câu 2: Trong các mệnh đề sau mệnh đề nào đúng? A. Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c khi b song song với c (hoặc b trùng với c ). B. Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c thì b song song với c C. Góc giữa hai đường thẳng là góc nhọn. D. Góc giữa hai đường thẳng bằng góc giữa hai véctơ chỉ phương của hai đường thẳng đó. Câu 3: Cho tứ diện ABCD có hai cặp cạnh đối vuông góc. Trong các mệnh đề sau mệnh đề nào đúng? A. Tứ diện có ít nhất một mặt là tam giác nhọn. B. Tứ diện có ít nhất hai mặt là tam giác nhọn. C. Tứ diện có ít nhất ba mặt là tam giác nhọn. D. Tứ diện có cả bốn mặt là tam giác nhọn. Câu 4: Trong các mệnh đề dưới đây mệnh đề đúng là? A. Cho hai đường thẳng song song, đường thẳng nào vuông góc với đường thẳng thứ nhất thì cũng vuông góc với đường thẳng thứ hai. B. Trong không gian, hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì song song với nhau. C. Hai đường thẳng phân biệt vuông góc với nhau thì chúng cắt nhau. D. Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì vuông góc với nhau. Câu 5: Trong các mệnh đề sau đây, mệnh đề nào là đúng? A. Nếu đường thẳng a vuông góc với đường thẳng b và đường thẳng b vuông góc với đường thẳng c thì a vuông góc với c B. Cho ba đường thẳng a, b, c vuông góc với nhau từng đôi một. Nếu có một đường thẳng d vuông góc với a thì d song song với b hoặc c Trang 1
- Quan hệ vuông góc – HH 11 C. Nếu đường thẳng a vuông góc với đường thẳng b và đường thẳng b song song với đường thẳng c thì a vuông góc với c D. Cho hai đường thẳng a và b song song với nhau. Một đường thẳng c vuông góc với a thì c vuông góc với mọi đường thẳng nằm trong mặt phẳng a, b . Câu 6: Trong các mệnh đề sau đây, mệnh đề nào là đúng? A. Một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng đó cùng nằm trong một mặt phẳng B. Ba đường thẳng cắt nhau từng đôi một và không nằm trong một mặt phẳng thì đồng quy C. Một đường thẳng cắt hai đường thẳng cắt nhau cho trước thì cả ba đường thẳng đó cùng nằm trong một mặt phẳng D. Ba đường thẳng cắt nhau từng đôi một thì cùng nằm trong một mặt phẳng Câu 7: Trong các khẳng định sau, khẳng định nào đúng ? A. Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau. B. Nếu đường thẳng a vuông góc với đường thẳng b và đường thẳng b vuông góc với đường thẳng c thì a vuông góc với c . C. Cho hai đường thẳng phân biệt a và b . Nếu đường thẳng c vuông góc với a và b thì a, b , c không đồng phẳng. D. Cho hai đường thẳng a và b song song, nếu a vuông góc với c thì b cũng vuông góc với c . Câu 8: Mệnh đề nào sau đây là đúng? A. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại. B. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau. C. Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau. D. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia. Câu 9: Trong các mệnh đề sau đây, mệnh đề nào đúng? A. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau. B. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại. C. Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau. D. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia. Câu 10: Trong các mệnh đề sau đây, mệnh đề nào đúng? A. Cho hai đường thẳng a, b song song với nhau. Một đường thẳng c vuông góc với a thì c vuông góc với mọi đường thẳng nằm trong mặt phẳng(a,b). B. Cho ba đường thẳng a, b, c vuông góc với nhau từng đôi một. Nếu có một đường thẳng d vuông góc với a thì d song song với b hoặc c . C. Nếu đường thẳng a vuông góc với đường thẳng b và đường thẳng b vuông góc với đường thẳng c thì đường thẳng a vuông góc với đường thẳng c . D. Nếu đường thẳng a vuông góc với đường thẳng b và đường thẳng b song song với đường thẳng c thì đường thẳng a vuông góc với đường thẳng c . Trang 2
- Quan hệ vuông góc – HH 11 DẠNG 1: TÍNH GÓC GIỮA HAI ĐƯỜNG THẲNG. Phương pháp: Để tính góc giữa hai đường thẳng d1 ,d2 trong không gian ta có thể thực hiện theo hai cách Cách 1. Tìm góc giữa hai đường thẳng d1 ,d2 bằng cách chọn một điểm O thích hợp ( O thường nằm trên một trong hai đường thẳng). d1 d'1 O d'2 d2 ' ' Từ O dựng các đường thẳng d1 ,d2 lần lượt song song ( có thể tròng nếu O nằm trên một trong hai ' ' đường thẳng) với d1 và d2 . Góc giữa hai đường thẳng d1 ,d2 chính là góc giữa hai đường thẳng d1 ,d2 . Lưu ý 1: Để tính góc này ta thường sử dụng định lí côsin trong tam giác b2 c2 a2 cos A . 2bc Cách 2. Tìm hai vec tơ chỉ phương u ,u của hai đường thẳng d ,d 1 2 1 2 u1.u2 Khi đó góc giữa hai đường thẳng d1 ,d2 xác định bởi cos d1 ,d2 . u1 u2 Lưu ý 2: Để tính u1u2 , u1 , u2 ta chọn ba vec tơ a,b,c không đồng phẳng mà có thể tính được độ dài và góc giữa chúng,sau đó biểu thị các vec tơ u1 ,u2 qua các vec tơ a,b,c rồi thực hiện các tính toán a 3 Câu 1: Cho tứ diện ABCD có AB CD a , IJ ( I , J lần lượt là trung điểm của BC và AD 2 ). Số đo góc giữa hai đường thẳng AB và CD là A. 30 . B. 45.C. 60 .D. 90 . Câu 2: Cho hình hộp ABCD.A B C D . Giả sử tam giác AB C và A DC đều có 3 góc nhọn. Góc giữa hai đường thẳng AC và A D là góc nào sau đây? A. B· DB .B. ·AB C .C. D· B B .D. D· A C . Câu 3: Cho tứ diện đều ABCD (Tứ diện có tất cả các cạnh bằng nhau). Số đo góc giữa hai đường thẳng AB và CD bằng A. 30 . B. 45.C. 60 .D. 90 . Câu 4: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD . Số đo của góc MN,SC bằng A. 30 . B. 45.C. 60 .D. 90 . Câu 5: Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a. Gọi I và J lần lượt là trung điểm của SC và BC . Số đo của góc IJ,CD bằng A. 30 . B. 45.C. 60 .D. 90 . Trang 3
- Quan hệ vuông góc – HH 11 Câu 6: Cho hình lập phương ABCD.EFGH . Hãy xác định góc giữa cặp vectơ AB và DH ? A. 45 B. 90 C. 120 D. 60 Câu 7: Cho tứ diện ABCD có AB AC AD và B· AC B· AD 600 , C· AD 900 . Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vectơ IJ và CD ? A. 45 B. 90 C. 60 D. 120 Câu 8: Cho tứ diện ABCD có AB AC AD và B· AC B· AD 600 ,C· AD 900 . Gọi I và J lần lượt là trung điểm của AB và CD . Hãy xác định góc giữa cặp vectơ AB và IJ ? A. 120 . B. 90 . C. 60 . D. 45 . Câu 9: Cho tứ diện ABCD có hai mặt ABC và ABD là các tam giác đều. Góc giữa AB và CD là? A. 120 . B. 60 . C. 90 . D. 30 . Câu 10: Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a . Gọi I và J lần lượt là trung điểm của SC và BC . Số đo của góc IJ, CD bằng: A. 90 . B. 45 . C. 30 . D. 60 . Trang 4