Bài giảng Đại số lớp 10 - Chương 4, Bài 1: Ôn tập dấu của nhị thức và dấu của tam thức bậc hai
Bạn đang xem tài liệu "Bài giảng Đại số lớp 10 - Chương 4, Bài 1: Ôn tập dấu của nhị thức và dấu của tam thức bậc hai", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_dai_so_lop_10_chuong_4_bai_1_on_tap_dau_cua_nhi_th.pptx
Nội dung text: Bài giảng Đại số lớp 10 - Chương 4, Bài 1: Ôn tập dấu của nhị thức và dấu của tam thức bậc hai
- CHƯƠNG IV
- NỘI DUNG I.DẤU CỦA NHI THỨC BẬC NHẤT II. DẤU CỦA TAM THỨC III. ÁP DỤNG VÀO GIẢI BÀI TẬP
- 2.Dấu của nhị thức bậc nhất Định lí: Nhị thức f(x) = ax + b có giá trị cùng dấu với hệ số của a khi b x lấy giá trị trong khoảng (;)−a + trái dấu với hệ số a khi x lấy giá trị b trong khoảng (;)− −a
- BẢNG XÉT DẤU b x − −a + f(x) Trái dấu a 0 Cùng dấu a
- HÌNH VẼ b − a f(x) cùng dấu với a f(x) trái dấu với a
- Dấu của tam thức bậc hai f( x )= a x2 + bx + c ( a 0) + ) Δ 0 thì f(x) luôn cùng dấu với a với mọi x x f(x) Cùng dấu với a b +=)0Δ thì f(x) luôn cùng dấu với a trừ khi x =− 2a b x − + − 2a f(x) Cùng dấu với a 0 Cùng dấu với a + )0Δ , f(x) có hai nghiệm phân biệt x1,() x 2 x 1 x 2 x x1 x2 f(x) Cùng dấu với a 0 Trái dấu với a 0 Cùng dấu với a
- BÀI TẬP ÁP DỤNG DẠNG I: Xét dấu biểu thức a. fx()= 21x+ (xx−+ 1)( 2) b. g( x )= − 9 x2 + 12 x − 4
- ĐÁP ÁN: a. fx()= 21x+ (xx−+ 1)( 2) •2xx + 1 = 0 =−1 2 •xx +2 = 0 =− 2 •xx −1 = 0 = 1
- BẢNG XÉT DẤU 1 x − -2 − 1 + 2 2x + 1 - - 0 + + x - 1 - - - 0 + x + 2 - 0 + + + f(x) - + 0 - +
- b. g( x )= − 9 x2 + 12 x − 4 2 −9x2 + 12 x − 4 = 0 x = 3 BẢNG XÉT DẤU 2 x − 3 + g(x) + 0 +
- II. Dạng 2: Giải bất phương trình f() x 0, f () x 0, f () x 0, f () x 0, Phương pháp: - Biến đổi f(x) thành tích hoặc thương của các nhị thức bậc nhất hoặc tam thức bậc hai. - Lập bảng xét dấu của f(x), kết luận nghiệm của bất phương trình. Bài 2. Giải các bất phương trình: a) x (2 x − 1) 0 (1) −x2 11 b) − (2) xx2 ++32xx++12
- III. Dạng 3: Tìm điều kiện của tham số để biểu thức f() x= ax2 + bx + c không đổi dấu trên R. Phương pháp: - Nếu a = 0 thì ta thay vào f(x) và kiểm tra trực tiếp. - Nếu a 0 thì sử dụng điều kiện để tam thức bậc hai không đổi dấu trên R: a0 a0 *) f(x) 0, x R *) f(x) 0, x R 0 Δ 0 a0 a0 *) f(x) 0, x R *) f(x) 0, x R Δ 0 Δ 0 Bài 3. Tìm điều kiện của tham số m để:` 5 a)0− x2 + mx + m − x 4 2 b) Hàm số y= mx −22 mx + xác định với mọi x c)x22+ 4 x + ( m − 2) 0 vô nghiệm
- Hướng dẫn: 5 a)0− x2 + mx + m − x 4 2 5 Đặt f() x= − x + mx + m − 4 − 10 a 0 − 10 fx( ) 0 2 5 0 mm+40 − mm2 +4 − 5 0 4 Ta thấy -1 < 0 luôn đúng 2 2 m =1 Ta xét dấu: mm+−45 Ta có mm+4 − 5 = 0 m =−5 Bảng xét dấu m − −5 1 + mm2 +−45 + 0 − + Theo bảng xét dấu m2 +4 m − 5 0 m − 5;1 vậy m − 5;1
- Hướng dẫn: b) Hàm số y= mx2 −22 mx + xác định với mọi x mx2 −2 mx + 2 0; x Làm tương tự câu a: Đáp số: m (0;2 c)x22+ 4 x + ( m − 2) 0 vô nghiệm x22+4 x + ( m − 2) 0 ; x Nên Đáp số: m ( − ;0) ( 4; + )
- BÀI TẬP TRẮC NGHIỆM Câu 1. Tập xác định của hàm số f( x )= − x2 + 5 x + 6 là: A.(− 1;6) B.[− 1;6] C.(− ; − 1) (6; + ) D.(− ; − 1] [6; + ) Câu 2. Tập nghiệm của phương trình |x22− 5 x + 6 | = x − 5 x + 6 là: A.{2;3} B.(2;3) C.(− ;2) (3; + ) D.(− ;2] [3; + ) Câu 3. Giá trị của m để phương trình(m− 1) x2 − 2( m − 2) x + m − 3 = 0 có 2 nghiệm trái dấu là: Am.1 B.m 2 C.1 m 3 Dm.3 Câu 4. Nếu 28 m thì số nghiệm của phương trình x2 − mx +2 m − 3 = 0 là: A. Chưa xác định được B. 0 C. 1 D. 2 2 6 8 + 0 - 0 +
- 1.Nhắc lí định lí về dấu nhị thức bậc nhất, dấu của tam thức bậc hai ? 2. Để xét dấu tích thương nhị thức bậc nhất ta làm như thế nào? 3. Để giải bất phương trình ta làm như thế nào ?
- 1.Về nhà làm BÀI TẬP trắc nghiệm trong đề cương 2.Xem trước bài bất phương trình bậc nhất hai ẩn
- Tìm các giá trị của m a);(m+ 1) x2 + mx + m 0; x R b);− 2 x2 + ( m + 2) x + m − 4 0; x R c); x2 − 2(2 m − 3) x + 4 m − 3 0; x R d);3 x2 + 2(2 m − 1) x + m + 4 0; x R