Bài giảng Giải tích lớp 12 - Tiết 38: Nguyên hàm (Tiết 1) - Năm học 2012-2014 - Nguyễn Thị Lý
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Giải tích lớp 12 - Tiết 38: Nguyên hàm (Tiết 1) - Năm học 2012-2014 - Nguyễn Thị Lý", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_giai_tich_lop_12_tiet_38_nguyen_ham_tiet_1_nam_hoc.ppt
Nội dung text: Bài giảng Giải tích lớp 12 - Tiết 38: Nguyên hàm (Tiết 1) - Năm học 2012-2014 - Nguyễn Thị Lý
- GV: NGUYỄN THỊ LÝ
- KIEÅM TRA BAØI CUÕ Caâu 1: Tính ñaïo haøm cuûa caùc haøm soá sau: a) F(x) = x3 F'( x ) = f ( x ) = 3 x2 b) F(x) = 3sinx +5 F'( x ) = f ( x ) = 3cos x Caâu 2: Tính ñaïo haøm cuûa caùc haøm soá sau: x ' a x 1,(C )' = 0 6, = aa (0 1) ln a 2,(x )' = 1 7,( sinx) ' = cos x ' x +1 3,= x ( −1) 8,( cosx) ' = −sin x 1 +1 9,( tanx) ' = 1 2 4,( lnx) ' = cos x x x 1 5,(ex )' = e 10,( cotx) ' = − sin 2 x
- TIEÁT 38: NGUYEÂN HAØM (T1) I. Nguyeân haøm vaø tính chaát Ví duï 1: 1. Nguyeân haøm: 3 * Ñònh nghóa a. Haøm soá F(x)= x laøø moät nguyeân haøm cuûa haøm soá f(x)= 3x2 treân R Kí hieäu K laø khoaûng, ñoaïn hoaëc vì F’(x) = (x3)’= 3x2 , x R nöûa khoaûng cuûa R. ÑN: b. Haøm soá F(x)= 3sinx +5 laøø moät Cho f(x) xaùc ñònh treân K nguyeân haøm cuûa haøm soá f(x)= 3cosx treân R Haøm soá F(x) ñöôïc goïi laø moät vì F’(x)=(3sinx + 5)’=3cosx x R nguyeân haøm cuûa f(x) treân K neáu F’(x) = f(x) vôùi x K
- TIEÁT 38: NGUYEÂN HAØM (T1) I.Nguyeân haøm vaø tính chaát 1. Nguyeân haøm: Ví duï 2ï: * Ñònh nghóa Kí hieäu K R. Haøm soá naøo sau ñaây laømoät nguyeân haøm cuûa haøm soá f(x)= 3x2 treân R? Cho f(x) xaùc ñònh treân K A. F(x) = x3 Haøm soá F(x) ñöôïc goïi laø moät B. F(x) = x3 - 10 nguyeân haøm cuûa f(x) treân K neáu F’(x) = f(x) x K C. F(x) =6x D. F(x) = x3 + 5
- TIEÁT 38: NGUYEÂN HAØM (T1) 1. Nguyeân haøm: F(x) +C : Hoï taát caû caùc nguyeân haøm cuûa * Ñònh Lí 1: f(x) treân K. F(x) laø moät nguyeân haøm cuûa Kí hieäu f (x)dx = F(x) + C f(x) treân K thì vôùi moãi haèng soá C, haøm soá G(x) = F(x) + C cuõng laø moät nguyeân haøm cuûa f(x) treân K. : :Dấu nguyên hàm * Ñònh Lí 2: Neáu F(x) laø moät nguyeân haøm f(x): Hàm số dưới dấu tích phân. cuûa f(x) treân K thì moïi nguyeân haøm cuûa f(x) treân K ñeàu coù daïng f(x)dx: Biểu thức dưới dấu tích phân. F(x) + C, vôùi C laø moät haèng soá. (Đây chính là vi phân của F(x) vì f(x)dx = dF(x))
- TIEÁT 38: NGUYEÂN HAØM (T1) 1. Nguyeân haøm: Ví duï 3: Meänh ñeà naøo sau ñaây sai? f (x)dx = F(x) + C Vôùi F(x) laø moät nguyeân A. exx dx=+ e C haøm cuûa f(x) treân K B. 2dx = 2x + C C. sin xdx = - cos x + C x2 D. xdx = + C 2
- TIEÁT 38: NGUYEÂN HAØM (T1) 1. Nguyeân haøm: f (x)dx = F(x) + C Ví duï 4: a / 3x2 dx =+xC3 Vôùi F(x) laø moät nguyeân haøm cuûa f(x) treân K b/ 3cos xd x =+3sinx C 2. Söï toàn taïi cuûa nguyeân haøm: Ñònh lí 3: Moïi haøm soá lieân tuïc treân K ñeàu coù nguyeân haøm treân K. Chuù yù: Töø ñaây yeâu caàu tìm nguyeân haøm cuûa moät haøm soá ñöôïc hieåu laø tìm nguyeân haøm treân töøng khoaûng xaùc ñònh cuûa noù.
- TIEÁT 38: NGUYEÂN HAØM (T1) I/ NGUYEÂN HAØM VAØ TÍNH Ví duï 5. CHAÁT 1. Nguyeân haøm: Tính: 2. Söï toàn taïi cuûa nguyeân 32ex − dx x haøm: ( ) =− 3ed x 2dx 3. Tính chaát cuûa nguyeân haøm =−3ex d x 2 d x *TC1: f ' (x)dx = f (x) + C =3ex − 2x + C *TC2 : kf(x)dx = k f (x)dx (k 0) *TC3: [ f (x) g(x)]dx = f (x)dx g(x)dx
- TIEÁT 38: NGUYEÂN HAØM (T1) I/ NGUYEÂN HAØM VAØ TÍNH CHAÁT 1. Nguyeân haøm: 2. Söï toàn taïi cuûa nguyeân haøm: 3. Tính chaát cuûa nguyeân haøm: 4. Baûng nguyeân haøm cuûa moät soá haøm soá thöôøng gaëp
- BAÛNG ÑAÏO HAØM BAÛNG NGUYEÂN HAØM MOÄT SOÁ HAØM MOÄT SOÁ HAØM SOÁ THÖÔØNG GAËP SOÁ THÖÔØNG GAËP 1,(C )'= 0 1, 0dx = C 2,(x )'= 1 2, dx = xC+ +1 ' x +1 x 3, =x ( − 1) 3, x dx = +C ( − 1) +1 +1 1 1 4, dx = ln xC+ 4,( lnx) ' = x x 5, ex dx = eCx + xx 5,(ee )' = x ' x x a a x 6, a dx = +C ( 0 a 1) 6, =aa( 0 1) ln a ln a 7, cosx . dx = sin xC+ 7,( sinxx) '= cos 8, sinx . dx = −+cos xC 8,( cosxx) '=− sin 1 1 9, dx = tan xC+ 9,( tanx) ' = cos2 x cos2 x 1 1 10, dx = −+cot xC 10,( cotx) ' =− sin2 x sin2 x
- TIEÁT 38: NGUYEÂN HAØM (T1) 4. Baûng nguyeân haøm cuûa moät Ví duï 7. Tính: soá haøm soá thöôøng gaëp 1, 0dx= C 1. (5x42− x + 1) dx = 2, dx=+ x C 42 =5 x dx − x dx + dx +1 x 3, x dx= + C ( -1) 4++ 1 2 1 3 +1 x x5 x 1 =5. − +x + C = x − + x + C 4,dx=+ ln x C 4++ 1 2 1 3 x 5, exx dx=+ e C 1 3 1 2 a x 2. ( +=x) dx 3 dx+ x dx x 1 x 6, a dx= (0< a 1) x +1 ln a x 2 2 =3lnx + + C = 3ln x + x x + C 7, cosx . dx=+ sin x C 1 +1 3 8, sinx . dx= − cos x + C 2 x x 1 3. (2sinx− e ) dx =−2 sin xdx e dx 9,dx=+ tan x C 2 cos x = −2cos x − ex + C 1 10,dx= − cot x + C sin2 x
- T×m ph¬ng ¸n ®óng HEÁT15 GIÔØs (Thêi gian 15 gi©y) 1211020501030406070809101314ssss C©u 1: ( 1 −= x ) dx x2 A −+C B x−+2 x C 2 x2 x2 C xC−+ D xC++ 2 2
- LêI GI¶I (1xdx−=−xdxdx) x2 =−+xC 2
- T×m ph¬ng ¸n ®óng HEÁT121511020501030406070809101314 sGIÔØsss (Thêi gian 15 gi©y) 2 C©u 2: 3sin x−=2 dx cos x A sin 3x−+ 2 tan x C B −3cosx − 2 tan x + C C 3cosx−+ 2 tan x C D −3cosx + 2 tan x + C
- LêI GI¶I 2 3sin x− 2 dx cos x 1 =−3sd inxdx 2 x cxos2 = −3cC osx − 2 t anx +
- T×m ph¬ng ¸n ®óng HEÁT151211020501030406070809101314 GIÔØsssss (Thêi gian 15 gi©y) 11 C©u 3: x−=2 dx 2 x x 1 x3 1 A ++C B −+C 3 x 3 x 11 x3 1 C ++C D ++C 4 x x 3 x
- LỜI GIẢI 11 xdx− 2 2 x 1 1 =−xdxd2 xx−2 2 1 +1 1 xx2 −+21 =−+. C 1 221 +1 −+ 2 3 xx2 3 1 =++=++xCC−1 33x
- TÌM HỌ NGUYÊN HÀM CỦA HÀM SỐ (Thêi gian 15 gi©y) C©u 4: ( x 2 −= 3x ) xdx Giải: (x2− 3x) xdx =( x 3 − 3x 2 ) dx HEÁT GIÔØ 32 121102050103040607080910131415ssss =− x dx 3 x dx xx43 x4 = −3. + C = −xC3 + 43 4
- TÌM HỌ NGUYÊN HÀM CỦA HÀM SỐ (Thêi gian 15 gi©y) x C©u 5: 2sin 2 dx = 2 Giải: 2 x 1− cosx 2sin dx= 2. dx HEÁT GIÔØ 22 121102051010304060708091013145ssss = (1 − cosx) dx = dx- cosxdx =x − sinx + C
- TÌM HỌ NGUYÊN HÀM CỦA HÀM SỐ (Thêi gian 15 gi©y) xx2 −3 C©u 6: T×m hµm sè F(x) biÕt: F ' ( x ) == và F ( 2 ) 0 x Giải: x22− 3x x F(x)= dx =( x − 3) dx = − 3x + C HEÁT GIÔØ x2 121511020501030406070809101314ssss 22 mà F(2)=0 − 3.2 + C = 0 C=4 2 x2 Vậy F(x)=−+ 3x 4 2
- CỦNG CỐ KIẾN THỨC F(x) laø nguyeân haøm cuûa f(x) khi F’(x)= f(x) Hoï nguyeân haøm cuûa haøm soá f(x) laø f()() x dx=+ F x C Tính chaát 1: f'( x ) dx=+ f ( x ) C Tính chaát 2: kf()() x dx= k f x dx Tính chaát 3: [f ( x ) g ( x )] dx = f ( x ) dx g ( x ) dx Baûng nguyeân haøm cuûa moät soá haøm soá thöôøng gaëp
- HÖÔÙNG DAÃN VEÀ NHAØ * Hoïc ñònh nghóa vaø caùc tính chaát cuûa nguyeân haøm, baûng nguyeân haøm cuûa moät soá haøm soá thöôøng gaëp. * Xem tröôùc phaàn caùc phöông phaùp tính nguyeân haøm. *Baøi taäp 1,2 (SGK trang 100)