Bài giảng Giải tích lớp 12 - Chương 3, Bài 2: Bài tập Tích phân - Trường THPT Vĩnh Long
Bạn đang xem tài liệu "Bài giảng Giải tích lớp 12 - Chương 3, Bài 2: Bài tập Tích phân - Trường THPT Vĩnh Long", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_giai_tich_lop_12_chuong_3_bai_2_bai_tap_tich_phan.pptx
Nội dung text: Bài giảng Giải tích lớp 12 - Chương 3, Bài 2: Bài tập Tích phân - Trường THPT Vĩnh Long
- VINH LONG HIGH SCHOOL WELCOME ALL TEACHERS TO OUR CLASS 12X3 TEACHER : TRAN TRAN HUYNH 1
- VINH LONG DEPARTMENT OF EDUCATION AND TRAINING VINH LONG HIGH SCHOOL REVIEW OF INTEGRALS TEACHER : TRAN TRAN HUYNH SUBJECT : MATHS
- TEACHING FESTIVAL VINH LONG PROVINCE MAJOR CONTENT Let be a continuous function on 1/ Simple integration uses directly the primitive properties and table the. closed interval [a;b], DEFINITION is an antiderivative of function on 2/ Method of change of variables( 2 types): the closed interval [a;b]. PROPERTY THEREFORE : METHOD OF 3/ Method of intergration by parts: INTEGRATION TRAN TRAN HUYNH - VINH LONG HIGH SCHOOL ANALYSIS 12
- EXERCISE 1: Compute the following integrals : TRAN TRAN HUYNH - VINH LONG HIGH SCHOOL ANALYSIS 12
- EXERCISE 2: Compute the following integrals : TRAN TRAN HUYNH - VINH LONG HIGH SCHOOL ANALYSIS 12
- REINFORCE KNOWLEDGE MAJOR CONTENT: * Definition and properties of integrals. * Simple integration uses directly the primitive properties and table . * Integration by changing of variables. * Integration by parts HOMEWORK: *Do all the homework in the handouts . * Preparation :Calculate integration and solve geometric application of integrals . TRAN TRAN HUYNH - VINH LONG HIGH SCHOOL ANALYSIS 12
- THE LESSON IS OVER THANK FOR YOUR ATTEND!
- Some signs to use the method of integration by parts: IDENTIFICATION LET • Note : “ L.P.T.E” L(logs),P(polynomial),T(trionometry),E(exponential) TRAN TRAN HUYNH - VINH LONG HIGH SCHOOL ANALYSIS 12
- Method of change of variables : TYPE 2: * Let : * We have : * Take the differential of 2 sides : * New integral calculation: TRAN TRAN HUYNH - VINH LONG HIGH SCHOOL ANALYSIS 12
- Fill in the blank to change the appropriate variable of integrals . TRAN TRAN HUYNH - VINH LONG HIGH SCHOOL ANALYSIS 12
- Solution: Letting: Let: We have: Therefore: